Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(4): 1445-1457, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729771

RESUMO

Extracellular polysaccharides are widely produced by bacteria, yeasts, and algae. These polymers are involved in several biological functions, such as bacteria adhesion to surface and biofilm formation, ion sequestering, protection from desiccation, and cryoprotection. The chemical characterization of these polymers is the starting point for obtaining relationships between their structures and their various functions. While this fundamental correlation is well reported and studied for the proteins, for the polysaccharides, this relationship is less intuitive. In this paper, we elucidate the chemical structure and conformational studies of a mannan exopolysaccharide from the permafrost isolated bacterium Psychrobacter arcticus strain 273-4. The mannan from the cold-adapted bacterium was compared with its dephosphorylated derivative and the commercial product from Saccharomyces cerevisiae. Starting from the chemical structure, we explored a new approach to deepen the study of the structure/activity relationship. A pool of physicochemical techniques, ranging from small-angle neutron scattering (SANS) and dynamic and static light scattering (DLS and SLS, respectively) to circular dichroism (CD) and cryo-transmission electron microscopy (cryo-TEM), have been used. Finally, the ice recrystallization inhibition activity of the polysaccharides was explored. The experimental evidence suggests that the mannan exopolysaccharide from P. arcticus bacterium has an efficient interaction with the water molecules, and it is structurally characterized by rigid-rod regions assuming a 14-helix-type conformation.


Assuntos
Mananas , Psychrobacter , Aderência Bacteriana , Polissacarídeos
2.
Microorganisms ; 9(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379305

RESUMO

Xanthomonas campestris pv. campestris is known as the causative agent of black rot disease, which attacks mainly crucifers, severely lowering their global productivity. One of the main virulence factors of this pathogen is its capability to penetrate and form biofilm structures in the xylem vessels. The discovery of novel approaches to crop disease management is urgent and a possible treatment could be aimed at the eradication of biofilm, although anti-biofilm approaches in agricultural microbiology are still rare. Considering the multifactorial nature of biofilm, an effective approach against Xanthomonas campestris implies the use of a multi-targeted or combinatorial strategy. In this paper, an anti-biofilm strategy based on the use of fatty acids and the bacteriophage (Xccφ1)-hydroxyapatite complex was optimized against Xanthomonas campestris mature biofilm. The synergic action of these elements was demonstrated and the efficient removal of Xanthomonas campestris mature biofilm was also proven in a flow cell system, making the proposed approach an effective solution to enhance plant survival in Xanthomonas campestris infections. Moreover, the molecular mechanisms responsible for the efficacy of the proposed treatment were explored.

3.
Front Microbiol ; 11: 732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390981

RESUMO

Periodic epidemics of black rot disease occur worldwide causing substantial yield losses. Xanthomonas campestris pv. campestris (Xcc) represents one of the most common bacteria able to cause the above disease in cruciferous plants such as broccoli, cabbage, cauliflower, and Arabidopsis thaliana. In agriculture, several strategies are being developed to contain the Xanthomonas infection. The use of bacteriophages could represent a valid and efficient approach to overcome this widespread phenomenon. Several studies have highlighted the potential usefulness of implementing phage therapy to control plant diseases as well as Xcc infection. In the present study, we characterized the effect of a lytic phage on the plant Brassica oleracea var. gongylodes infected with Xcc and, for the first time, the correlated plant metabolic response. The results highlighted the potential benefits of bacteriophages: reduction of bacterium proliferation, alteration of the biofilm structure and/or modulation of the plant metabolism and defense response.

4.
Future Microbiol ; 14: 1369-1382, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31596138

RESUMO

Aim: The dramatic emergence of antibiotic resistance has directed the interest of research toward the discovery of novel antimicrobial molecules. In this context, cold-adapted marine bacteria living in polar regions represent an untapped reservoir of biodiversity endowed with an interesting chemical repertoire. The aim of this work was to identify new antimicrobials and/or antibiofilm molecules produced by cold-adapted bacteria. Materials & methods: Organic extracts obtained from polar marine bacteria were tested against Staphylococcus aureus. Most promising samples were subjected to suitable purification strategies. Results: Results obtained led to the identification of a novel lipopeptide able to effectively inhibit the biofilm formation of S. aureus. Conclusion: New lipopeptide may be potentially useful in a wide variety of biotechnological and medical applications.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/química , Biofilmes/efeitos dos fármacos , Temperatura Baixa , Staphylococcus aureus/efeitos dos fármacos , Adaptação Fisiológica , Antibacterianos/química , Antibacterianos/isolamento & purificação , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Clima Frio , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Água do Mar/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento
6.
Artigo em Inglês | MEDLINE | ID: mdl-28280714

RESUMO

Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti-S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis.


Assuntos
Aldeídos/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudoalteromonas/metabolismo , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Aldeídos/química , Aldeídos/isolamento & purificação , Regiões Antárticas , Antibacterianos/química , Antibacterianos/isolamento & purificação , Homosserina/análogos & derivados , Homosserina/química , Homosserina/isolamento & purificação , Homosserina/farmacologia , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Pseudoalteromonas/isolamento & purificação , Vibrio/efeitos dos fármacos
7.
Antonie Van Leeuwenhoek ; 110(11): 1377-1387, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28161737

RESUMO

Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: â†’4)-ß-D-GlcpNAcA-(1 â†’3)-ß-D-QuipNAc4NAc-(1 â†’3)-ß-D-GalpNAc-(1 â†’. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity.


Assuntos
Alteromonadaceae/química , Amino Açúcares/química , Proteínas Anticongelantes/química , Modelos Moleculares , Polissacarídeos Bacterianos/química , Adaptação Fisiológica , Alteromonadaceae/citologia , Proteínas Anticongelantes/isolamento & purificação , Sequência de Carboidratos , Temperatura Baixa , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Dinâmica Molecular , Polissacarídeos Bacterianos/isolamento & purificação
8.
Carbohydr Polym ; 156: 364-371, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27842835

RESUMO

Microrganisms from sea ice, glacial and subglacial environments are currently under investigation due to their relevant ecological functions in these habitats, and to their potential biotechnological applications. The cold-adapted Colwellia psychrerythraea 34H produces extracellular polysaccharides with cryoprotection activity. We here describe the purification and detailed molecular primary and secondary structure of the exopolysaccharide (EPS) secreted by C. psychrerythraea 34H cells grown at 4°C. The structure was determined by chemical analysis and NMR. The trisaccharide repeating unit of the EPS is constituted by a N-acetyl quinovosamine unit and two residues of galacturonic acid both decorated with alanine. In addition, the EPS was tested in vitro showing a significant inhibitory effect on ice recrystallization. In-depth NMR and computational analysis suggest a pseudohelicoidal structure which seems to prevent the local tetrahedral order of the water molecules in the first hydration shell, and could be responsible of the inhibition of ice recrystallization. As cell cryopreservation is an essential tool in modern biotechnology and medicine, the observations reported in this paper could pave the way for a biotechnological application of Colwellia EPS.


Assuntos
Alteromonadaceae/química , Crioprotetores , Polissacarídeos Bacterianos/isolamento & purificação , Temperatura Baixa , Gelo , Espectroscopia de Ressonância Magnética , Polissacarídeos Bacterianos/química , Relação Estrutura-Atividade
9.
Front Microbiol ; 6: 1333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696962

RESUMO

Microbial biofilms have great negative impacts on the world's economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their use in combination with conventional antibiotics.

10.
Appl Microbiol Biotechnol ; 99(14): 5863-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25616525

RESUMO

Obtaining high levels of pure proteins remains the main bottleneck of many scientific and biotechnological studies. Among all the available recombinant expression systems, Escherichia coli facilitates gene expression by its relative simplicity, inexpensive and fast cultivation, well-known genetics and the large number of tools available for its biotechnological application. However, recombinant expression in E. coli is not always a straightforward procedure and major obstacles are encountered when producing many eukaryotic proteins and especially membrane proteins, linked to missing posttranslational modifications, proteolysis and aggregation. In this context, many conventional and unconventional eukaryotic hosts are under exploration and development, but in some cases linked to complex culture media or processes. In this context, alternative bacterial systems able to overcome some of the limitations posed by E. coli keeping the simplicity of prokaryotic manipulation are currently emerging as convenient hosts for protein production. We have comparatively produced a "difficult-to-express" human protein, the lysosomal enzyme alpha-galactosidase A (hGLA) in E. coli and in the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 cells (P. haloplanktis TAC125). While in E. coli the production of active hGLA was unreachable due to proteolytic instability and/or protein misfolding, the expression of hGLA gene in P. haloplanktis TAC125 allows obtaining active enzyme. These results are discussed in the context of emerging bacterial systems for protein production that represent appealing alternatives to the regular use of E. coli and also of more complex eukaryotic systems.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Recombinantes/biossíntese , alfa-Galactosidase/biossíntese , Biotecnologia/métodos , Estabilidade Enzimática , Humanos , Engenharia Metabólica/métodos , Proteínas Recombinantes/genética , alfa-Galactosidase/genética
11.
J Am Chem Soc ; 137(1): 179-89, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25525681

RESUMO

The low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one- and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanics and dynamics calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments.


Assuntos
Alteromonadaceae/química , Proteínas Anticongelantes/química , Polissacarídeos/química , Alteromonadaceae/citologia , Proteínas Anticongelantes/isolamento & purificação , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Polissacarídeos/isolamento & purificação
12.
Chemistry ; 17(25): 7053-60, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21557359

RESUMO

Pseudoalteromonas haloplanktis TAB 23 is a Gram-negative psychrophilic bacterium isolated from the Antarctic coastal sea. To survive in these conditions psychrophilic bacteria have evolved typical membrane lipids and "antifreeze" proteins to protect the inner side of the microorganism. As for Gram-negative bacteria, the outer membrane is mainly constituted by lipopoly- or lipooligosaccharides (LPS or LOS, respectively), which lean towards the external environment. Despite this, very little is known about the peculiarity of LPS from Gram-negative psychrophilic bacteria and what their role is in adaptation to cold temperature. Here we report the complete structure of the LOS from P. haloplanktis TAB 23. The lipid A was characterized by MALDI-TOF MS analysis and was tested in vitro showing a significant inhibitory effect on the LPS-induced pro-inflammatory cytokine production when added in culture with LPS from Escherichia coli. The product obtained after de-O-acylation of the LPS was analyzed by MALDI-TOF MS revealing the presence of several molecular species, differing in phosphorylation degree and oligosaccharide length. The oligosaccharide portion released after strong alkaline hydrolysis was purified by anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) to give three main fractions, characterized by means of 2D NMR spectroscopy, which showed a very short highly phosphorylated saccharidic chain with the following general structure. α-Hepp3R,6R,4R'-(1→5)-α-Kdop4P-(2→6)-ß-GlcpN4R-(1→6)-α-GlcpN1P (R=-H(2)PO(3) or -H; R'=α-Galp-(1→4)-ß-Galp-(1→ or H-).


Assuntos
Escherichia coli/química , Lipídeo A/química , Lipopolissacarídeos/química , Oligossacarídeos/química , Pseudoalteromonas/química , Regiões Antárticas , Configuração de Carboidratos , Temperatura Baixa , Lipídeo A/isolamento & purificação , Lipopolissacarídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Modelos Químicos , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Chemistry ; 14(30): 9368-76, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18770509

RESUMO

Many cold habitats contain plenty of microorganisms that represent the most abundant cold-adapted life forms on earth. These organisms have developed a wide range of adaptations that involve the cell wall of the microorganism. In particular, bacteria enhance the synthesis of unsaturated fatty acids of membrane lipids to maintain the membrane fluidity, but very little is known about the adaptational changes in the structure of the lipopolysaccharides (LPSs), the main constituent of the outer leaflet of the outer membrane of Gram-negative bacteria. The aim of this study was to investigate the chemical structure of these LPSs for insight into the temperature-adaptation mechanism. For this objective, the cold-adapted Psychromonas arctica bacterium, which lives in the arctic sea-water near Spitzbergen (Svalbard islands, Arctic) was cultivated at 4 degrees C. The lipooligosaccharides (LOSs) were isolated and analysed by means of chemical analysis and electrospray ionisation high-resolution Fourier transform mass spectrometry. The LOS was then degraded either by mild hydrazinolysis (O-deacylation) or with hot 4 M KOH (N-deacylation). Both products were investigated in detail by using 1H and 13C NMR spectroscopy and mass spectrometry. The core consists of a mixture of species that differ because of the presence of nonstoichiometric D-fructose and/or D-galacturonic acid units.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Gammaproteobacteria/química , Gammaproteobacteria/fisiologia , Lipopolissacarídeos/química , Biofilmes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Fosforilação , Temperatura
14.
Extremophiles ; 10(1): 41-51, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16179963

RESUMO

In prokaryotes, protein disulfide bond oxidation, reduction and isomerization are catalyzed by members of the thioredoxin superfamily, characterized by the conserved C-X-X-C motif in their active site. Thioredoxins and glutaredoxins contribute to the reducing power in the cytoplasm, while the Dsb system catalyzes disulfide bonds formation in the periplasmic space. This paper addresses the question of disulfide bonds formation in a cold-adapted micro-organism, Pseudoalteromonas haloplanktis TAC 125 (PhTAC125) by characterizing the DsbA system. We found distinctive features respect mesophilic counterparts that highlighted for the first time the occurrence of two adjacent chromosomal DsbA genes organised in a functional operon. The sophisticated transcriptional regulation mechanism that controls the expression of these two genes was also defined. The two DsbA proteins, named PhDsbA and PhDsbA2, respectively, were expressed in Escherichia coli and characterized. Results reported in this paper provide some insights into disulfide bonds formation in a micro organism isolated in the Antarctic sea water.


Assuntos
Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Pseudoalteromonas/enzimologia , Adaptação Fisiológica , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Temperatura Baixa , DNA Bacteriano/genética , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Dados de Sequência Molecular , Proteína Dissulfeto Redutase (Glutationa)/genética , Pseudoalteromonas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água do Mar/microbiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...